In this study, we use machine learning to examine the predictive validity of the NeuroCognitive Risk Assessment (NCRA) in a forensic community corrections population. We seek to address current limitations of forensic risk assessments by introducing the first mobile, self-scoring, risk assessment software that relies on neurocognitive testing to predict reoffense. This assessment, run entirely on a tablet, measures decision-making via a suite of neurocognitive tests in less than 30 minutes. The software measures several cognitive and decision-making traits of the user, including impulsivity, empathy, aggression, and several other traits linked to reoffending. Our analysis measured whether this assessment successfully predicted recidivism by testing probationers in a large urban city (Houston, TX, United States) from 2017 to 2019.